Skip to content Skip to navigation
  • Salón K201 (antes salón de usos múltiples del nivel H), CIMAT, Guanajuato

13:00 - 14:00. Homotopía y Cohomología para Espacios Discretos.
Antonio Rieser, CONACYT-CIMAT

Resumen: Una suposición casi omnipresente en el análisis de datos moderno es que un conjunto de datos de alta dimensión se concentra en un espacio de dimensión inferior. Recientemente, una gran cantidad de atención se ha centrado en cómo usar muestras puntuales de un espacio de medida métrica para estimar las invariantes topológicas y geométricas de este espacio de dimensión inferior, y al aplicar los algoritmos resultantes a conjuntos de datos reales. En este plática, mostramos cómo una teoría de homotopía no trivial se puede construir directamente en conjuntos de puntos, y daremos una cohomología que es invariante por las homotopías definidas. Luego mostramos que la misma construcción también se aplica a una variedad de objetos combinatorios y damos varios cálculos para grupos de homotopía en nubes de puntos y gráficos y complejos simpliciales.